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Abstract

The spectrum of ambient seismic noise shows strong signals associated with

tropical cyclones, yet a detailed understanding of these signals and the relation-

ship between them and the storms is currently lacking. Through the analysis of

more than a decade of seismic data recorded at several stations located in and

adjacent to the northwest Pacific Ocean, here we show that there is a persistent

and frequency-dependent signature of tropical cyclones in ambient seismic noise

that depends on characteristics of the storm and on the detailed location of

the station relative to the storm. An adaptive statistical model shows that the

spectral amplitude of ambient seismic noise, and notably of the short-period

secondary microseisms, has a strong relationship with tropical cyclone intensity

and can be employed to extract information on the tropical cyclones.
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1. Introduction

Ambient seismic noise is the ubiquitous background vibration of the solid

Earth recorded worldwide by seismic stations and mainly due to ocean waves

driven by winds in intense storms, such as extra-tropical storms and tropical

cyclones (TCs) (Gutenberg, 1936; Bromirski, 2009). Two mechanisms are re-5

sponsible for ambient seismic noise generation: (A) the primary mechanism,

which is the direct coupling between ocean waves and the solid Earth in shallow

water, responsible for primary microseisms (Hasselmann, 1963; Ardhuin et al.,

2015, period T in the range of 10 to 20 s) and the seismic “hum” (Nishida, 2013;

Rhie and Romanowicz, 2004; Ardhuin et al., 2015, T > 50 s), and (B) the sec-10

ondary mechanism, which is the interaction amongst ocean waves, responsible

for secondary microseisms (Longuet-Higgins, 1950; Hasselmann, 1963, T < 10

s).

Much has been done towards understanding the oceanic mechanisms that

control the generation of ambient seismic noise (e.g. Longuet-Higgins, 1950;15

Hasselmann, 1963; Kedar et al., 2008; Ardhuin et al., 2011; Gualtieri et al., 2013;

Ardhuin et al., 2015; Nishida and Takagi, 2016), allowing it to be used to infer

characteristics of the sea state (e.g. Ardhuin et al., 2012; Neale et al., 2017). Re-

cent studies have shown that ambient seismic noise sources associated with iso-

lated TCs moving across the ocean can be located using seismic methods in the20

vicinity of the TCs (e.g. Gerstoft et al., 2006; Zhang et al., 2010; Gualtieri et al.,

2014; Farra et al., 2016). Their signature are clearly visible on land (e.g. Ebeling and Stein,

2011; Sufri et al., 2014). Other studies have focused on TCs moving over land

and on the link between seismic signals and TC energy decay at landfall (e.g.

Tanimoto and Lamontagne, 2014; Tanimoto and Valovcin, 2015). Still, the re-25

lationship between seismic signals and characteristics of TCs is not yet well

understood (e.g. Ebeling and Stein, 2011) due to the complexity of the non-

linear and frequency-dependent energy transfer between the atmosphere and

the ocean (e.g. Janssen, 2004; Ochi, 2003), as well as between the ocean and the

solid Earth (e.g. Hasselmann, 1963; Ardhuin et al., 2010).30
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Seismic ground motion is related indirectly to the intensity of TCs through

ocean gravity waves (microseisms) and infragravity waves (seismic hum) excited

in turn by strong winds. Therefore, ocean wave models could be employed to

study the relationship between ambient seismic noise and TCs. However, the use

of ocean wave models for studying ambient seismic noise generated by decades of35

TCs is difficult due to limitations of the wave-model data. In particular, ocean

wave models, such as WAVEWATCH III (Tolman et al., 2009), use fixed grids

with a resolution (0.5 × 0.5 degrees for WAVEWATCH III) that is too course

for TCs, generating spatial aliasing and underestimation of the maximum wind

and ocean wave height (e.g. Tolman and Alves, 2005, their Figure 8). Moreover,40

these models use wind reanalyses as a input, which do not represent well the

observed TC intensity and location (Schenkel and Hart, 2012; Murakami, 2014).

In Fig. S1 in the supplementary material, we show the comparison between the

TC wind speed dataset used in this study and the TC wind speed from the

ERA-Interim reanalysis database from the European Centre for Medium-Range45

Weather Forecasts, commonly used as an input for ocean wave models like

WAVEWATCH III. The wind speed in the reanalysis is underestimated with

respect to observations by about a factor of two (in line with the results of

Murakami (2014)). We also observe that the cycle of intensification and decay

of TCs differs between observations and reanalysis. The wind speed is related50

to the spectrum of the ocean wave heigh (Hasselmann et al., 1973), which in

turn is related to the spectral amplitude of noise sources (Hasselmann, 1963).

Farra et al. (2016) modeled P-wave sources associated with typhoon Ioke and

showed an error on the modeled amplitude comparable with the underestimation

given by the reanalysis dataset (their Fig. 6). For these reasons, we decided55

to rely on TC best track datasets without using information from ocean wave

models.

Understanding how processes in the atmosphere and in the ocean couple

into seismic waves in the solid Earth and how these can be used to monitor

the global environment has been listed as one of the high-priority Seismological60

Grand Challenges (Lay et al., 2009). Studying this coupling is becoming more
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important as a new and valuable source of information on the geophysical effects

of climate change at time scales not otherwise accessible and for the pre-satellite

era.

2. Materials and Methods65

2.1. Atmospheric and seismic datasets.

We analyze 13 years of atmospheric and seismic data recorded in and adja-

cent to the northwest Pacific to assess the relationship between the occurrence

of TCs and the spectral characteristics of ambient seismic noise. TCs in this re-

gion having wind speed larger than 33 m/s are called typhoons and can develop70

throughout the year with a climatological peak between June and November.

The northwest Pacific is the most active basin globally, where approximately

30% of the TCs form each year, as well as where the most intense ones tend

to occur (Gray, 1968). We focus on TCs occurring in the northwest Pacific

Ocean between 2000 and 2012 during the peak season activity June-November75

(Fig. 1A). Each TC is identified by track location, intensity and size, recorded

every 6 hours. TC intensity is defined as the one-minute mean sustained surface

wind speed. We use center locations and intensities of TCs in the northwest

Pacific from the Joint Typhoon Warning Center best-track dataset (Chu et al.,

2002) (http://www.usno.navy.mil/NOOC/nmfc-ph/RSS/jtwc/best tracks/). A80

tropical cyclone dataset (Knaff et al., 2014, 2015), built by using storm-centered

infrared imagery, is used to identify their size. The size of a tropical cyclone is

defined as the squared radius of 5-kt (1 kt=0.514 m/s) winds (Knaff et al., 2014,

2015), and therefore it incorporates wind speeds larger than this threshold. We

select TCs within 40◦ of each seismic station and, since we are interested in85

estimating TC intensity before landfall, we retain only that part of the track

moving over the ocean. Time series of TC intensity, size, propagation speed and

number of simultaneous TCs are shown in Fig. S2 and S3 in the supplementary

material. A scatterplot between intensity and size of TCs is shown in Fig. S4.

We keep in our dataset those storms that have been identified as typhoons – i.e.90
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with wind speed larger than 33 m/s – for at least two days. We do not include

in our analysis tropical depressions, tropical storms, as well as short-lived (i.e.

less than two days) category-1 typhoons. TCs on the Southern Hemisphere

have peak season in January-March, and therefore have been excluded from

our analysis. Including TCs on the Southern Hemisphere did not influence our95

results.

We also analyze continuous broadband vertical-component seismograms recorded

during the same time period (2000-2012) at seven seismic stations of the Global

Seismic Network (GSN) located in the same region (Fig. 1A). We use the ver-

tical component long-period (LHZ) seismograms, with a sampling rate of 1 Hz.100

In case of stations with multiple seismometers, the primary sensor is used. The

instrumental response is deconvolved from the original seismogram in order to

get ground acceleration and the power spectral density (PSD, with respect to 1

(m/s2)2/Hz) is computed each 15 minutes and in 30 frequency bands, consider-

ing overlapping windows both in time and frequency (Berger et al., 2004). Data105

have been cleaned from earthquakes, glitches and spurious signals by visual in-

spection. A time-moving median each 6 hours is performed to obtain the same

time step of the TC best-track dataset. Furthermore, to remove seasonality

effects due to winter storms on the noise records and better isolate the effect

of TCs, long-period trends (i.e. 30 days) have been removed from the seismic110

data.

In Fig. 1B-C, we show spectrograms of ambient seismic noise (T = 4 − 12

s) recorded in 2012 at stations (B) TATO (Taipei, Taiwan) and (C) GUMO

(Guam, Mariana Islands). Black lines denote the intensity of TCs – defined as

the one-minute mean sustained surface wind speed – moving above the ocean115

within 40◦ of each station. Long-lasting signals characterized by high power

spectral density (PSD) at short period occur simultaneously with TCs. Figure

S5 in the supplementary material shows spectrograms of ambient seismic noise

in the microseism frequency band (T = 4− 20 s) at station (A) TATO and (B)

GUMO between 2008 (bottom) and 2012 (top). Superposed is the TC intensity.120

In all cases, we observe a good agreement between the occurrence of TCs and
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large-amplitude PSDs at short periods.

2.2. Statistical data processing and estimation of TC intensity.

We use a generalized linear model (GLM) with seismic and atmospheric data125

between 2000 and 2010 to estimate TC intensity during the TC peak season

2011 and 2012. Ordinary linear regression implies a linear relationship between

a dependent variable Y and a set of independent variables, or covariates, X,

assuming that the dependent variable Y, conditional to the observed X, is nor-

mally distributed. However, TC intensity is a non-negative variable, displaying130

a strongly skewed marginal probability density function, which can be well ap-

proximated by a Gamma distribution (Fig. S6 in the supplementary material).

The dispersion of the distribution is not small with respect to the mean value,

so that an ordinary linear regression is not a realistic assumption, while a GLM

is a more appropriate choice (Agresti, 2015).135

In order to estimate TC intensity from ambient seismic noise, we proceed as

follows. First, we specify a GLM of TC intensity given the ambient seismic noise

PSD using data between 2000 and 2010. Second, we use the estimated GLM

parameters to predict the TC intensity during 2011 and 2012. A limitation

of this method is that, in case of simultaneous TCs, we cannot estimate their140

TC intensities separately. In such a case, we still estimate an equivalent TC

intensity which accounts for their cumulative effect.

Our GLM has four components: 1) a dependent variable, that is the intensity

of TCs vTC, 2) a matrix containing the set of independent variables X, 3) a

parameter vector βββ and 4) a link function g, such that

g(μi) = Xβββ = β0 +X1β1 +X2β2 + ... (1)

where μi is the expected value of the distribution of the TC intensity given the

observed values of X (red in Fig. S6) and β0 is the intercept, which accounts

for effects that are not explained by the considered covariates (Agresti, 2015).
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The statistical prediction of TC intensity v̂TC can then be obtained as:

v̂TC = g−1(Xβ̂̂β̂β) (2)

where β̂̂β̂β denotes the estimated parameters. Based on the observed distribution

of TC intensity (Figure S6 in the supplementary materials), we assume a Gamma

distribution for the dependent variable X. There are then three possible choices145

for the function linking the variables: identity, inverse and logarithmic (Agresti,

2015). After comparing different GLMs in the context of the Akaike Information

Criterion (Akaike, 1974), we choose to model the data using the identity link

function.

3. Results and Discussion150

3.1. Seismic signals in the presence and in the absence of TCs

For each station shown in Fig. 1A, we compute the median of the PSD over

13 years (2000-2012) in the presence and in the absence of TCs. Fig. 2A shows

the spectra as a function of period at station TATO in the presence (blue) and

the in the absence (black) of TCs as a difference with respect to the Low-Noise155

Model (Peterson et al., 1993), while Fig. 2B shows the difference of spectra in

the presence and in the absence of TCs at all stations (dashed lines for stations

on islands and solid lines for stations on the continent).

In order to assess if these differences are statistically significant at the 5%

level, we perform a Wilcoxon-Mann-Whitney test (Gibbons and Chakraborti,160

2011). This is a non-parametric method to test the null hypothesis that two

medians are equal – or, equivalently, that their difference in zero – against

the bilateral alternative hypothesis that the two medians are not equal. Fig.

2C shows the p-value as a function of period and station associated with the

spectral difference in Fig. 2B. The spectral difference, statistically significant at165

the 5% level, is shown in light blue. The spectral difference is always statistically

significant at station TATO, whereas, at the other stations, the test does not

reject the null hypothesis at a few periods (gray scale).
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Considering all stations together, the percentage of spectral difference that

is statistically significant decreases with increasing period: 93.8% at T = 4− 7170

s (short period secondary microseisms), 87.5% at T = 7 − 10 s (long period

secondary microseisms), 71.9% between T = 10 − 20 s (primary microseisms)

and 75.0% at T > 20 s (seismic hum).

The presence of TCs on the ocean results in an increase of the ambient

seismic noise PSD especially at periods T < 20 s (secondary and primary mi-175

croseisms), where the difference of spectra is mostly statistically significant,

and at stations located on islands (dashed lines in Fig. 2B) – that is at TATO,

GUMO, DAV (Davao, Philippines) and QIZ (Qiongzhong, China).

Notably, ambient seismic noise at stations TATO and QIZ, located on islands

close to the continent surrounded by relatively shallow water, is affected by180

TCs at T ≤ 20 s (secondary and primary microseisms), while ambient seismic

noise at stations GUMO and DAV, located on islands far away from the coast

surrounded by a deep-water environment, are especially affected by TCs at

T ≤ 7 s (short-period secondary microseism). These observations suggest that

the propagation of seismic waves from the sources – which, over 13 years, are185

likely located in oceanic environments characterized by different depths – to the

receivers modulates the frequency content of the ambient noise records.

The ocean-continent boundary also modulates the seismic wavefield recorded

on the continent (Gualtieri et al., 2015). Seismic records at stations located on

the continent – INCN (Inchon, Republic of Korea), KMI (Kunming, Yunnan190

Province, China), BJT (Baijiatuan, Beijing, China) – are in general weakly in-

fluenced by TCs (difference of spectra smaller than 1 dB at all periods). Notably,

the presence of the ocean-continent boundary contributes to weaken primarily

the short-period ambient seismic noise (Gualtieri et al., 2015). This is partic-

ularly evident comparing the spectral difference at KMI and QIZ (Fig. 2B,195

red solid line and purple dashed lines, respectively), located onshore and on an

island close to the coast, respectively.

We also note that a persistent feature due to TCs on primary microseisms

(T=10 − 20 s) is observed at stations located on islands close to the coasts
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(TATO and QIZ), and at stations located on the continent (INCN, KMI and200

BJT). Stations located on islands in a deep-water environment, far away from

the coasts (GUMO, DAV), show a weak signal between 10 and 20 s (Fig. 2B),

which is not statistically significant (Fig 2C). This could be due to propagation

effects or it could be the result of a persistent location of seismic sources of

primary microseisms on the continental shelf (as theorized by Hasselmann, 1963;205

Ardhuin et al., 2015), far away from stations in a deep-water environment.

Since the effect of TCs on ambient seismic noise recorded at station TATO

is the strongest (Fig. 2B) and statistically significant at all periods (Fig. 2), we

select this station for in-depth study.

3.2. Ambient seismic noise as a function of TC intensity210

In Fig. 3, we show the PSD of ambient seismic noise recorded at TATO as

a function of TC intensity, colored by density. We only show periods up to 20

s (secondary and primary microseisms), where TCs strongly affect the ambient

seismic noise PSD (Fig. 2B). We take the median of ambient seismic noise in

three period bands: (A) 3.8 ≤ T ≤ 7 s, short-period secondary microseisms,215

(B) 7 ≤ T ≤ 10 s, long-period secondary microseisms and (C) 10 ≤ T ≤ 20

s, primary microseisms. Despite the complexity of the generation mechanism

and the energy transfer that involves the atmosphere, ocean and solid Earth, we

observe that the PSD of ambient seismic noise is correlated with TC intensity.

Notably, the PSD of ambient seismic noise increases for increasing TC intensity220

at all periods. To the first order, this relationship can be assumed as linear (black

lines in Fig. 3). The slope of the linear regression and the Pearson correlation

coefficient ρ decrease with increasing seismic period. The maximum correlation

(ρ = 0.42) is found for the short-period secondary microseisms (Fig. 3A). In this

period band, a similar linear trend can also be identified at other stations. Fig. 4225

shows the relationship between the PSD of short-period secondary microseisms

and TC intensity at the other six stations in Fig. 1, colored by density. We note

that the slope of the linear fit decreases moving from islands to the continent.

Previous studies detected seismic signals associated with isolated TCs mov-
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ing on the ocean (e.g. Gerstoft et al., 2006; Zhang et al., 2010; Ebeling and Stein,230

2011; Gualtieri et al., 2014; Farra et al., 2016). They found the strongest sig-

nals in the same period band that shows the maximum correlation with TC

intensity (T = 4 − 7, Fig. 2). At these periods, ambient seismic noise is gen-

erated by the interaction of ocean gravity waves coming from nearly opposite

directions (Longuet-Higgins, 1950; Hasselmann, 1963). In the specific case of a235

TC, winds on one side of the TC generate ocean waves travelling in the direc-

tion of motion of the TC itself, while winds on the opposite side generate ocean

waves travelling in the opposite direction. Thus, the tail of a TC is expected

to be a considerable source of wave-wave interaction (Longuet-Higgins, 1952).

While moving over the ocean, TCs thus carry their own sources of secondary240

microseisms, which follow the storm (e.g. Gerstoft et al., 2006; Gualtieri et al.,

2014).

3.3. Results from an adaptive statistical model

The strong correlation between the PSD of short-period ambient seismic

noise and TC intensity suggests that the PSD of ambient seismic noise can be245

employed as additional source of information about TCs. We use the GLM de-

scribed in section 2.2 with the seismic and atmospheric data described in section

2.1 between 2000 and 2010 to estimate TC intensity during the TC peak sea-

sons 2011 and 2012. In our GLM, we consider two different sets of independent

variables: X = X[1], which is composed only by the PSD of ambient seismic250

noise, and X = X[2] in which we also account for other TC characteristics.

In our first test, as independent variables X = X[1], we use the median of

ambient seismic noise PSD in three period bands: 4 ≤ T ≤ 7 s short-period

secondary microseisms, 7 ≤ T ≤ 10 s long-period secondary microseisms, and

10 ≤ T ≤ 20 s primary microseisms. This choice implicitly allows us to account255

for the dominant period of the PSD of ambient seismic noise. We recall that

the PSD is expressed in dB with respect to 1 (m/s2)2/Hz, which is a classic way

to represent the spectrum of ambient seismic noise.

In order to improve our predictions, in a second test, we add additional

10



variables X = X[2]: the size of TCs, defined as the squared radius of 5kt winds260

(Knaff et al., 2014, 2015), the distance between TCs and the seismic station

TATO, and a variable that accounts for the number of simultaneous TCs. Only

the TC size is statistically significant at the 5% level (Table 1 , second column).

We also checked that other variables, such as the TC propagation speed, the

tropical/extra-tropical transition, and the parameters of TCs on the Southern265

Hemisphere, are not statistically significant.

The estimated TC intensities for 2011 and 2012 peak seasons are shown

in Fig. 5. Observed data are in gray, estimated TC intensities considering

only short-period secondary-microseism PSDs are in blue, and considering both

short-period secondary-microseism PSDs and TC size are in red. Gray shad-270

ows indicate simultaneous TCs, for which we can asses only an equivalent TC

intensity accounting for their cumulative effect on ambient seismic noise. The

Pearson correlation coefficient between observed and predicted values is ρ = 0.60

in 2011 and ρ = 0.56 in 2012 considering only ambient seismic noise (blue in Fig.

5). All the three seismic-noise period bands are statistically significant at the275

5% level (Table 1 , first column). The estimated TC intensity improves adding

the information about the TC size (red in Fig. 5), with a Pearson correlation

coefficient of ρ = 0.84 in 2011 and ρ = 0.80 in 2012.

Including the TC size as a predictor in our GLM, the p-values associated

with long-period secondary microseisms (T = 7 − 10 s) and primary micro-280

seisms (T = 10−20 s) exceed the threshold of 5%, meaning that these variables

lose significance, while the short-period secondary microseisms (T = 4 − 7 s)

and TC size are statistically significant (see Table 1). This effect is known

as omitted-variable bias (Agresti, 2015) and it is due to the potential correla-

tion amongst the independent variables X = X[2]. This indicates that, while285

TC size is a significant variable, the coefficients estimated in the first test for

long-period secondary microseisms and primary microseisms are spurious. Not

including TC size, the model attributes spurious significance to the variables

correlated to the TC size or to the short-period secondary microseisms. The

Pearson correlation coefficient between short-period secondary microseisms and290
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long-period secondary microseisms is ρ � 0.75. Being generated by the same

physical mechanism (Longuet-Higgins, 1950), the short-period secondary mi-

croseisms and long-period secondary microseisms bands are correlated. The

Pearson correlation coefficient between short-period secondary microseisms and

primary microseisms is ρ � 0.43. One possible explanation for the positive cor-295

relation between short-period secondary microseisms and primary microseisms

is that the transition between secondary and primary mechanisms – ocean wave-

wave interaction and direct coupling between ocean waves and the seafloor

(Ardhuin et al., 2015) – does not occur at a fixed period and, especially for

very strong storms, secondary microseisms extend to periods greater than 10 s.300

For example, a category 1 TC having wind speed exceeding 40 m/s for at least

two days is expected to generate ocean waves having a peak period of about

23 s (e.g. Hanafin et al., 2012), which corresponds to about 11.5 s secondary

microseisms. Stronger TCs, characterized by stronger winds, can therefore gen-

erate longer period secondary microseisms also if these winds blow for a shorter305

time. Therefore, the long-period secondary microseisms and primary micro-

seisms are redundant variables in our GLM. Finally, we also observe that the

intercept is statistically significant in both models, but accounting for TC size,

the estimated value of the intercept β0 decreases of about 50%. Therefore, our

final GLM relies on two independent variables: the median of the short-period310

secondary-microseism PSD, and the TC size.

In Fig. 6, we focus on three TCs occurring in the northwest Pacific Ocean

during September–October 2012 within 40◦ of the seismic station TATO. Ty-

phoons Sanba (September 10-17) and Jelawat (September 20-30) were classi-

fied as category-5 super typhoons on the Saffir-Simpson scale, while Prapiroon315

(October 7-19) was a category 3 typhoon. JTWC best-track data intensity

(Chu et al., 2002) are shown in black, while estimates obtained using our GLM

with short-period secondary microseisms and TC intensity are in red. Our

model allows us to estimate well the overall TC intensification and decay for

all the three TCs, meaning that short-period ambient seismic noise recorded at320

TATO carries information on the intensity of the TCs. The Pearson correlation
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coefficients between observations and model are ρ = 0.83, ρ = 0.85, ρ = 0.81 for

Sanba, Jelawat and Prapiroon, respectively.

We note that the estimated TC intensity sometimes is delayed by a few hours

to a couple of days with respect to the best-track data. As the seismic propa-325

gation is nearly instantaneous with respect to the 6-hour time step, we ascribe

this delay to non-linear coupling between atmosphere and ocean, and a poten-

tially slow wind-wave growth which may take from a few hours to a few days

(Hasselmann et al., 1973). Furthermore, the linearity of our model is amongst

the possible causes of the small discrepancies between our model and the best-330

track data, given the complexity and non-linearity of the generation mechanism

of ambient seismic noise. A limitation of employing a linear model is that the

extreme values of TC intensity are not captured as well. For example, our GLM

overestimates the wind speed of about 10-15 m/s at the beginning and at the

end of the event, when the storm is a tropical depression. This limitation could335

be overcome by using a GLM with additional dependent variables accounting for

non-linearity in the seismic records (e.g. intermittency, Barndorff-Nielsen et al.,

2014) or by employing more sophisticated machine-learning statistical models,

such as Generalized Additive Models (Hastie and Tibshirani, 1990), which can

estimate and account for non-linear effects in the relationship between TC in-340

tensity and seismic records in an automatic fashion. In addition to that, the

presence of simultaneous weaker tropical and extra-tropical storms could poten-

tially affect the amplitude of ambient seismic noise and be the cause of occasional

model overestimations.

Finally, Fig. S7 in the supplementary material shows the comparison be-345

tween observed and estimated TC intensity in the 2011 and 2012 peak seasons

releasing the condition of the minimum wind speed considered in the best-track

data and including tropical storms lasting for more than two days. Notably, the

selection of storms in the best-track dataset is done excluding all tropical storms

(wind speed larger than 18 m/s) that last for less than two days and including350

all long-lasting ones. Thypoons and tropical storms often occur simultaneously

and therefore only an equivalent TC intensity is estimated in this case (grey
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shadow), but the correlation between observed (grey) and estimated intensity

(blue and red) is still very good and is better when including the storm size in

our statistical model. The Pearson correlation coefficient is ρ = 0.63 in 2011 and355

ρ = 0.67 in 2012 considering only ambient seismic noise (blue), and ρ = 0.75 in

2011 and ρ = 0.80 in 2012 considering also the storm size (red).

4. Conclusions

Despite the complexity of the energy transfer amongst atmosphere, ocean

and solid Earth, our analysis of ambient seismic noise recorded in the northwest360

Pacific over 13 years suggests that the PSD of ambient seismic noise carries a

persistent and statistically significant signature of TCs. This signature varies

with frequency and station location likely due to the propagation of seismic

waves across the heterogenous Earth structure and across the ocean-continent

boundary, or to a persistent location of seismic sources associated with specific365

frequency bands.

As our statistical estimate of TC intensity demonstrates, this signature is

correlated with TC intensity. Considering a single TC in the specific investigated

area, we found that, compared with observed TC intensities, the error obtained

estimating TC intensity from seismic ambient noise is smaller than the one370

obtained using state-of-the-art reanalyses (compare Figure 5b with Figure S1).

While we have shown strong predictive power of seismic noise for the estima-

tion of TC intensity, we do not suggest that the modern-day seismic observations

can augment current satellite capabilities. However, global seismic observations

going back several decades can now be exploited to provide new quantitative375

constraints on TC activity in remote ocean basins for the pre-satellite era.
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Figure 1: TCs and ambient seismic noise in the northwest Pacific Ocean. (A) Northwest Pacific

Ocean typhoon tracks for the period 2000 and 2012, colored by intensity. Black triangles mark

the seismic stations whose data has been used in this study. Spectrograms of ambient seismic

noise recorded at station (B) TATO and (C) GUMO during 2012. Black lines denote TC

intensity (scale on the right). The PSD of ambient seismic noise is defined with respect to

1 (m/s2)2/Hz. Vertical straight lines indicate times of earthquakes.
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Figure 2: (A) Power spectrum computed in the presence and in the absence of TCs at station

TATO during 2000− 2012 with respect to the Low-Noise Model (Peterson et al., 1993). The

blue (black) curve is computed considering only the ambient seismic noise PSD in the presence

(absence) of TCs within 40◦ of each station. (B) Difference between the spectrum computed

in the presence and in the absence of TCs at the seismic stations in Fig. 1. (C) P-value

associated with the difference between the PSD measured in the presence and in the absence

of TCs (panel B in this figure). Light blue indicates seismic periods at which the spectral

difference is statistically significant at the level of 5%.
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Figure 3: Ambient seismic noise at TATO vs TC intensity coloured by number of events.

The PSD of ambient seismic noise has been filtered in three period bands: (A) T=4-7 s,

short-period secondary microseisms, (B) T=7-10 s, long-period secondary microseisms and

(C) T=10-20 s, primary microseisms. The linear fit between ambient seismic noise PSD and

TC intensity (equation as a label) is in black. The Pearson correlation coefficient ρ between

the two quantities is printed as a label on the bottom-right corner.
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Figure 4: Scatter plots colored by density and linear fits between short-period secondary

microseisms (T=4 − 7 s) recorded at different stations and TC intensity. The slope of the

linear fit decreases moving from islands to the continent. For each station, we consider TCs

moving within 40◦.
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Figure 5: Observed TC intensity (gray) is compared to estimated TC intensity obtained

using as two different sets of independent variables: only ambient seismic noise (blue) and

ambient seismic noise with further independent characteristics of TCs (red). See Table 1 for

more details on these independent variables. Gray shadows indicate the time periods when

simultaneous TCs lie within 40◦ from the station. For each year, the Pearson correlation

coefficient is shown as a label.
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Figure 6: Observed (black) and estimated (red) TC intensity. TC intensity is estimated

by a Generalized Linear Model using short-period secondary microseisms and TC size as

independent variables. Background colors denote the TC category as given by the Saffir-

Simpson scale.
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